skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Xuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In Human–Robot Interaction, researchers typically utilize in-person studies to collect subjective perceptions of a robot. In addition, videos of interactions and interactive simulations (where participants control an avatar that interacts with a robot in a virtual world) have been used to quickly collect human feedback at scale. How would human perceptions of robots compare between these methodologies? To investigate this question, we conducted a 2x2 between-subjects study (N=160), which evaluated the effect of the interaction environment (Real vs. Simulated environment) and participants’ interactivity during human-robot encounters (Interactive participation vs. Video observations) on perceptions about a robot (competence, discomfort, social presentation, and social information processing) for the task of navigating in concert with people. We also studied participants’ workload across the experimental conditions. Our results revealed a significant difference in the perceptions of the robot between the real environment and the simulated environment. Furthermore, our results showed differences in human perceptions when people watched a video of an encounter versus taking part in the encounter. Finally, we found that simulated interactions and videos of the simulated encounter resulted in a higher workload than real-world encounters and videos thereof. Our results suggest that findings from video and simulation methodologies may not always translate to real-world human–robot interactions. In order to allow practitioners to leverage learnings from this study and future researchers to expand our knowledge in this area, we provide guidelines for weighing the tradeoffs between different methodologies. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  2. In many applications, Neural Nets (NNs) have classification performance on par or even exceeding human capacity. Moreover, it is likely that NNs leverage underlying features that might differ from those humans perceive to classify. Can we "reverse-engineer" pertinent features to enhance our scientific understanding? Here, we apply this idea to the notoriously difficult task of galaxy classification: NNs have reached high performance for this task, but what does a neural net (NN) "see" when it classifies galaxies? Are there morphological features that the human eye might overlook that could help with the task and provide new insights? Can we visualize tracers of early evolution, or additionally incorporated spectral data? We present a novel way to summarize and visualize galaxy morphology through the lens of neural networks, leveraging Dataset Distillation, a recent deep-learning methodology with the primary objective to distill knowledge from a large dataset and condense it into a compact synthetic dataset, such that a model trained on this synthetic dataset achieves performance comparable to a model trained on the full dataset. We curate a class-balanced, medium-size high-confidence version of the Galaxy Zoo 2 dataset, and proceed with dataset distillation from our accurate NN-classifier to create synthesized prototypical images of galaxy morphological features, demonstrating its effectiveness. Of independent interest, we introduce a self-adaptive version of the state-of-the-art Matching Trajectory algorithm to automate the distillation process, and show enhanced performance on computer vision benchmarks. 
    more » « less
  3. Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings. 
    more » « less
  4. null (Ed.)
    Microscopic evaluation of resected tissue plays a central role in the surgical management of cancer. Because optical microscopes have a limited depth-of-field (DOF), resected tissue is either frozen or preserved with chemical fixatives, sliced into thin sections placed on microscope slides, stained, and imaged to determine whether surgical margins are free of tumor cells—a costly and time- and labor-intensive procedure. Here, we introduce a deep-learning extended DOF (DeepDOF) microscope to quickly image large areas of freshly resected tissue to provide histologic-quality images of surgical margins without physical sectioning. The DeepDOF microscope consists of a conventional fluorescence microscope with the simple addition of an inexpensive (less than $10) phase mask inserted in the pupil plane to encode the light field and enhance the depth-invariance of the point-spread function. When used with a jointly optimized image-reconstruction algorithm, diffraction-limited optical performance to resolve subcellular features can be maintained while significantly extending the DOF (200 µm). Data from resected oral surgical specimens show that the DeepDOF microscope can consistently visualize nuclear morphology and other important diagnostic features across highly irregular resected tissue surfaces without serial refocusing. With the capability to quickly scan intact samples with subcellular detail, the DeepDOF microscope can improve tissue sampling during intraoperative tumor-margin assessment, while offering an affordable tool to provide histological information from resected tissue specimens in resource-limited settings. 
    more » « less
  5. Abstract To explore the structure–function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6‐[6‐(1,1‐di‐pyridin‐2‐yl‐ethyl)‐pyridin‐2‐ylmethyl]‐[2,2′]bipyridinyl (Py3Me‐Bpy). These modifications resulted in significantly improved stability and activity in both electro‐ and photocatalytic HER in neutral water. [Co(Py3Me‐Bpy)(OH2)](PF6)2catalyzes the electrolytic HER at −1.3 V (vs. SHE) for 20 hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pH 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoIspecies. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2released from the protonation of CoII−H species. 
    more » « less